跳转至

动态动态规划 1

例题

给定一棵 \(n\) 个点的树,点有点权,求最大独立集。\(m\) 次修改,每次把 \(x\) 的权值修改成 \(y\)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include<bits/stdc++.h>
#define up(l, r, i) for(int i = l, END##i = r;i <= END##i;++ i)
#define dn(r, l, i) for(int i = r, END##i = l;i >= END##i;-- i)
using namespace std;
typedef long long i64;
const int INF = 1e9;
const int MAXN = 1e5 + 3;
int W[MAXN];
struct Mat{ int M[2][2]; };
struct Vec{ int V[2];    };
Mat operator *(const Mat &a, const Mat &b){
    Mat c;
    c.M[0][0] = max(a.M[0][0] + b.M[0][0], a.M[0][1] + b.M[1][0]);
    c.M[0][1] = max(a.M[0][0] + b.M[0][1], a.M[0][1] + b.M[1][1]);
    c.M[1][0] = max(a.M[1][0] + b.M[0][0], a.M[1][1] + b.M[1][0]);
    c.M[1][1] = max(a.M[1][0] + b.M[0][1], a.M[1][1] + b.M[1][1]);
    return c;
}
Vec operator *(const Mat &a, const Vec &v){
    Vec r;
    r.V[0] = max(a.M[0][0] + v.V[0], a.M[0][1] + v.V[1]);
    r.V[1] = max(a.M[1][0] + v.V[0], a.M[1][1] + v.V[1]);
    return r;
}
namespace Gra{
    vector<int> E[MAXN];
    int G[MAXN], S[MAXN], D[MAXN], T[MAXN], F[MAXN];
    int X[MAXN], Y[MAXN];
    int H[MAXN][2];
    int K[MAXN][2];
    struct Mat M[MAXN];
    void dfs1(int u, int f){
        S[u] = 1;
        F[u] = f;
        for(auto &v : E[u]) if(v != f){
            dfs1(v, u);
            S[u] += S[v];
            if(S[v] > S[G[u]]) G[u] = v;
        }
    }
    int o;
    void dfs2(int u, int f){
        if(u == G[f])
            X[u] = X[f];
        else
            X[u] = u;
        H[u][0] = H[u][1] = 0;
        K[u][0] = K[u][1] = 0;
        const int &g = G[u];
        D[u] = ++ o;
        T[o] = u;
        if(g){
            dfs2(g, u);
            Y[u] = Y[g];
            K[u][0] += max(K[g][0], K[g][1]);
            K[u][1] += K[g][0];
        } else {
            Y[u] = u;
        }
        for(auto &v : E[u]) if(v != f && v != g){
            dfs2(v, u);
            H[u][0] += max(K[v][0], K[v][1]);
            H[u][1] += K[v][0];
        }
        M[u].M[0][0] = H[u][0];
        M[u].M[0][1] = H[u][0];
        M[u].M[1][0] = H[u][1] + W[u];
        M[u].M[1][1] = -INF;
        K[u][0] += H[u][0];
        K[u][1] += H[u][1] + W[u];
    }
}
namespace Seg{
    const int SIZ = 4e5 + 3;
    struct Mat M[SIZ];
    #define lc(t) (t << 1)
    #define rc(t) (t << 1 | 1)
    void pushup(int t, int a, int b){
        M[t] = M[lc(t)] * M[rc(t)];
    }
    void build(int t, int a, int b){
        if(a == b){
            M[t] = Gra :: M[Gra :: T[a]];
        } else {
            int c = a + b >> 1;
            build(lc(t), a, c);
            build(rc(t), c + 1, b);
            pushup(t, a, b);
        }
    }
    void modify(int t, int a, int b, int p, const Mat &w){
        if(a == b){
            M[t] = w;
        } else {
            int c = a + b >> 1;
            if(p <= c) modify(lc(t), a, c, p, w);
                else   modify(rc(t), c + 1, b, p, w);
            pushup(t, a, b);
        }
    }
    Mat query(int t, int a, int b, int l, int r){
        if(l <= a && b <= r){
            return M[t];
        } else {
            int c = a + b >> 1;
            if(r <= c) return query(lc(t), a, c    , l, r); else 
            if(l >  c) return query(rc(t), c + 1, b, l, r); else 
                return query(lc(t), a, c    , l, r) *
                       query(rc(t), c + 1, b, l, r);
        }
    }
}
int qread();
int main(){
    int n = qread(), m = qread();
    up(1, n, i)
        W[i] = qread();
    up(2, n, i){
        int u = qread(), v = qread();
        Gra :: E[u].push_back(v);
        Gra :: E[v].push_back(u);
    }
    Gra :: dfs1(1, 0);
    Gra :: dfs2(1, 0);
    Seg :: build(1, 1, n);
    Vec v0;
    v0.V[0] = v0.V[1] = 0;
    up(1, m, i){
        using namespace Gra;
        int x = qread(), y = qread();
        W[x] = y;
        int u = x;
        while(u != 0){
            const int &v = X[u];
            const int &f = F[v];
            M[u].M[0][0] = H[u][0];
            M[u].M[0][1] = H[u][0];
            M[u].M[1][0] = H[u][1] + W[u];
            M[u].M[1][1] = -INF;
            const Vec p = Seg :: query(1, 1, n, D[v], D[Y[u]]) * v0;
            Seg :: modify(1, 1, n, D[u], M[u]);
            const Vec q = Seg :: query(1, 1, n, D[v], D[Y[u]]) * v0;
            if(f != 0){
                H[f][0] = H[f][0] - max(p.V[0], p.V[1]) + max(q.V[0], q.V[1]);
                H[f][1] = H[f][1] - p.V[0] + q.V[0];
            }
            u = f;
        }
        Vec v1 = Seg :: query(1, 1, n, D[1], D[Y[1]]) * v0;
        printf("%d\n", max(v1.V[0], v1.V[1]));
    }
    return 0;
}