快速乘法逆元(离线)
用法
离线计算 \(x = [x_1, x_2, \cdots, x_n]\) 在模 \(p\) 意义下的逆元。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | #include<bits/stdc++.h>
using namespace std;
int power(int a, int b, int p){
int r = 1;
while(b){
if(b & 1) r = 1ll * r * a % p;
b >>= 1, a = 1ll * a * a % p;
}
return r;
}
const int MAXN = 5e6 + 3;
int A[MAXN], B[MAXN];
int P[MAXN], Q[MAXN];
int main(){
ios :: sync_with_stdio(false);
cin.tie(nullptr);
int n, p, K, S = 1;
cin >> n >> p >> K;
P[0] = 1;
for(int i = 1;i <= n;++ i){
cin >> A[i];
P[i] = 1ll * P[i - 1] * A[i] % p;
}
Q[n] = power(P[n], p - 2, p);
for(int i = n;i >= 1;-- i){
Q[i - 1] = 1ll * Q[i] * A[i] % p;
B[i] = 1ll * Q[i] * P[i - 1] % p;
}
int ans = 0;
for(int i = 1;i <= n;++ i){
S = 1ll * S * K % p;
ans = (ans + 1ll * S * B[i]) % p;
}
cout << ans << "\n";
return 0;
}
|