跳转至

快速乘法逆元(离线)

用法

离线计算 \(x = [x_1, x_2, \cdots, x_n]\) 在模 \(p\) 意义下的逆元。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include<bits/stdc++.h>
using namespace std;
int power(int a, int b, int p){
    int r = 1;
    while(b){
        if(b & 1) r = 1ll * r * a % p;
        b >>= 1,  a = 1ll * a * a % p;
    }
    return r;
}
const int MAXN = 5e6 + 3;
int A[MAXN], B[MAXN];
int P[MAXN], Q[MAXN];
int main(){
    ios :: sync_with_stdio(false);
    cin.tie(nullptr);
    int n, p, K, S = 1;
    cin >> n >> p >> K;
    P[0] = 1;
    for(int i = 1;i <= n;++ i){
        cin >> A[i];
        P[i] = 1ll * P[i - 1] * A[i] % p;
    }
    Q[n] = power(P[n], p - 2, p);
    for(int i = n;i >= 1;-- i){
        Q[i - 1] = 1ll * Q[i] * A[i] % p;
        B[i] = 1ll * Q[i] * P[i - 1] % p;
    }
    int ans = 0;
    for(int i = 1;i <= n;++ i){
        S = 1ll * S * K % p;
        ans = (ans + 1ll * S * B[i]) % p;
    }
    cout << ans << "\n";
    return 0;
}