快速乘法逆元(在线)
用法
在线计算 \(x = [x_1, x_2, \cdots, x_n]\) 在模 \(p\) 意义下的逆元。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | #include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e7 + 3;
pair<int, int> F[MAXN], G[MAXN];
int I[MAXN];
using u32 = uint32_t;
u32 read(u32 &seed){
seed ^= seed << 13;
seed ^= seed >> 17;
seed ^= seed << 5;
return seed;
}
int main(){
ios :: sync_with_stdio(false);
cin.tie(nullptr);
u32 seed;
int n, p;
cin >> n >> p >> seed;
int m = pow(p, 1.0 / 3.0);
I[1] = 1;
for(int i = 2;i <= p / m;++ i){
I[i] = 1ll * (p / i) * (p - I[p % i]) % p;
}
for(int i = 1;i < m;++ i){
for(int j = i + 1;j <= m;++ j){
if(!F[i * m * m / j].second){
F[i * m * m / j] = { i, j };
G[i * m * m / j] = { i, j };
}
}
}
F[ 0] = G[ 0] = { 0, 1 };
F[m * m] = G[m * m] = { 1, 1 };
for(int i = 1;i < m * m;++ i) if(!F[i].second)
F[i] = F[i - 1];
for(int i = m * m - 1;i >= 1;-- i) if(!G[i].second)
G[i] = G[i + 1];
int lastans = 0;
for(int i = 1;i <= n;++ i){
int a, inv;
a = (read(seed) ^ lastans) % (p - 1) + 1;
int w = 1ll * a * m * m / p;
auto &yy1 = F[w].second; // *avoid y1 in <cmath>
if(1ll * a * yy1 % p <= p / m){
inv = 1ll * I[1ll * a * yy1 % p] * yy1 % p;
} else {
auto &yy2 = G[w].second;
inv = 1ll * I[1ll * a * (p - yy2) % p] * (p - yy2) % p;
}
lastans = inv;
}
cout << lastans << "\n";
return 0;
}
|