基环树

#include "../header.cpp"
using edge = tuple<int, int, int>;
vector <edge> E[MAXN];
vector <edge> W;
vector <int>  C;
edge F[MAXN];
bool V[MAXN];
int  I[MAXN], o;
void dfs0(int u, int e){
  V[u] = true;
  I[u] = ++ o;
  for(auto &[i, v, w] : E[u]) if(i != e){
    if(V[v]){
      if(I[v] < I[u]){
        for(int p = u;p != v;){
          auto &[j, f, x] = F[p];
          C.push_back(p);
          W.push_back({j, p, x});
          p = f;
        }
        C.push_back(v);
        W.push_back({i, v, w});
      }
    } else {
      F[v] = {i, u, w};
      dfs0(v, i);
    }
  }
}
namespace Problem2{
// ===== 删除环上第 i 条边,求直径 =====
  i64 H[MAXN], A1[MAXN], B1[MAXN], A2[MAXN], B2[MAXN], A3[MAXN], B3[MAXN];
  i64 L[MAXN];
  i64 dis = 0;
  void dfs1(int u, int e){
    for(auto &[i, v, w] : E[u]) if(i != e){
      if(!V[v]){
        dfs1(v, i);
        dis = max(dis, L[u] + w + L[v]);
        L[u] = max(L[u], L[v] + w);
      }
    }
  }
  int main(){
    int n;
    cin >> n;
    for(int i = 1;i <= n;++ i){
      int u, v, w;
      cin >> u >> v >> w;
      E[u].push_back({i, v, w});
      E[v].push_back({i, u, w});
    }
    dfs0(1, 0);
    memset(V, 0, sizeof(V));
    for(auto &u : C)
      V[u] = true;
    for(auto &u : C){
      dfs1(u, 0);
    }
    int l = 0, r = C.size() - 1;
    for(int i = l;i <= r;++ i){
      int x = C[i];
      if(i > 0)
        H[i] = H[i - 1] + get<2>(W[i - 1]);
      A1[i] = L[x] + H[i];
      B1[i] = L[x] - H[i];
      A2[i] = L[x] - H[i];
      B2[i] = L[x] + H[i];
    }
    i64 h = H[r] + get<2>(W.back());
    for(int i = l;i <= r;++ i)
      A1[i] = max(i == l ? -INFL : A1[i - 1], L[C[i]] + H[i]),
      A2[i] = max(i == l ? -INFL : A2[i - 1], L[C[i]] - H[i]);
    for(int i = r;i >= l;-- i)
      B1[i] = max(i == r ? -INFL : B1[i + 1], L[C[i]] - H[i]),
      B2[i] = max(i == r ? -INFL : B2[i + 1], L[C[i]] + H[i]);
    A3[l] = -INFL, B3[r] = -INFL;
    for(int i = l + 1;i <= r;++ i){
      int x = C[i];
      i64 w = A2[i - 1] + L[x] + H[i];
      A3[i] = max(A3[i - 1], w);
    }
    for(int i = r - 1;i >= l;-- i){
      int x = C[i];
      i64 w = B2[i + 1] + L[x] - H[i];
      B3[i] = max(B3[i + 1], w);
    }
    i64 t =  INFL;
    for(int i = l;i < r;++ i){
      i64 d = A1[i] + B1[i + 1] + h;
      i64 g = A2[i] + B2[i + 1] + 0;
      d = max({d, dis, A3[i], B3[i + 1]});
      t = min(t, d);
    }
    t = min(t, max(A3[r], dis));
    if(t % 2 == 0)
      cout << t / 2 << ".0" << endl;
    if(t % 2 == 1)
      cout << t / 2 << ".5" << endl;
    return 0;
  }
}
namespace Problem3{
// ===== 求最大点权独立集 =====
  int A[MAXN];
  i64 X[MAXN], Y[MAXN];
  i64 P[MAXN][2], Q[MAXN][2];
  void dfs1(int u, int e){
    for(auto &[i, v, w] : E[u]) if(i != e){
      if(!V[v]){
        dfs1(v, i);
        Y[u] += max(X[v], Y[v]);
        X[u] += Y[v];
      }
    }
    X[u] += A[u];
  }
  int main(){
    int n;
    cin >> n;
    for(int i = 1;i <= n;++ i){
      cin >> A[i];
    }
    for(int i = 1;i <= n;++ i){
      int u, v;
      cin >> u >> v;
      ++ u, ++ v;
      E[u].push_back({i, v, 0});
      E[v].push_back({i, u, 0});
    }
    double p;
    cin >> p;
    dfs0(1, 0);
    memset(V, 0, sizeof(V));
    for(auto &u : C)
      V[u] = true;
    for(auto &u : C){
      dfs1(u, 0);
    }
    int l = 0, r = C.size() - 1;
    P[0][1] = X[C[0]];
    P[0][0] = -INFL;
    Q[0][0] = Y[C[0]];
    Q[0][1] = -INFL;
    for(int i = l + 1;i <= r;++ i){
      int x = C[i];
      P[i][1] = X[x] + P[i - 1][0];
      P[i][0] = Y[x] + max(P[i - 1][0], P[i - 1][1]);
      Q[i][1] = X[x] + Q[i - 1][0];
      Q[i][0] = Y[x] + max(Q[i - 1][0], Q[i - 1][1]);
    }
    i64 ans = max({P[r][0], Q[r][0], Q[r][1]});
    cout << fixed << setprecision(1) << ans * p << endl;
    return 0;
  }
}
int main(){
  return Problem3 :: main();
}