快速离散对数
用法
给定原根 \(g\) 以及模数 \(\mathrm{M}\),\(T\) 次询问 \(x\) 的离散对数。
复杂度 \(\mathcal O(\mathrm{M}^{2/3} + T \log \mathrm{M})\)。
#include "../header.cpp"
namespace BSGS {
unordered_map <int, int> M;
int B, U, P, g;
void init(int g, int P0, int B0);
int solve(int y);
}
const int MAXN = 1e5 + 3;
int H[MAXN], P[MAXN], H0, p, h, g, M;
bool V[MAXN];
int solve(int x){
if(x <= h) return H[x];
int v = M / x, r = M % x;
if(r < x - r) return ((H0 + solve(r)) % (M - 1) - H[v] + M - 1) % (M - 1);
else return (solve(x - r) - H[v + 1] + M - 1) % (M - 1);
}
int main(){
ios :: sync_with_stdio(false);
cin.tie(nullptr);
cin >> g >> M;
h = sqrt(M) + 1;
BSGS :: init(g, M, sqrt(1ll * M * sqrt(M) / log10(M)));
H0 = BSGS :: solve(M - 1);
H[1] = 0;
for(int i = 2;i <= h;++ i){
if(!V[i]){
P[++ p] = i;
H[i] = BSGS :: solve(i);
}
for(int j = 1;j <= p&&P[j] <= h / i;++ j){
int &p = P[j];
H[i * p] = (H[i] + H[p]) % (M - 1);
V[i * p] = true;
if(i % p == 0) break;
}
}
int T; cin >> T;
while(T --){
int x; cin >> x;
cout << solve(x) << "\n";
}
return 0;
}