快速最大公约数
用法
已知小值域 \(m\) 以及 \(n\) 次询问,\(\mathcal O(m)\) 预处理,\(\mathcal O(1)\) 单次查询 \(x, y\) 的最大公约数。
#include "../header.cpp"
const int MAXT= 1e6 + 3;
int G[MAXM][MAXM], T[MAXT][3];
int A[MAXN], B[MAXN], o = 1e6, h = 1e3, V[MAXT];
int tgcd(int a, int b){
if(a <= h && b <= h) return G[a][b];
return a == b ? a : 1;
}
int qgcd(int a, int b){
int ans = 1;
up(0, 2, i){
if(T[b][i] > h){
if(a % T[b][i] == 0) a /= T[b][i], ans *= T[b][i];
} else {
int d = G[a % T[b][i]][T[b][i]];
a /= d, ans *= d;
}
}
return ans;
}
int main(){
ios :: sync_with_stdio(false);
cin.tie(nullptr);
up(1, h, i) G[0][i] = G[i][0] = i;
up(1, h, i) up(1, h, j){
if(i >= j) G[i][j] = G[i - j][j];
else G[i][j] = G[i][j - i];
}
up(2, o, i) if(!V[i]){
V[i] = i;
for(int j = 2;i * j <= o;++ j)
if(!V[i * j]) V[i * j] = i;
}
T[1][0] = T[1][1] = T[1][2] = 1;
up(2, o, i){
int p = V[i];
int a = T[i / p][0];
int b = T[i / p][1];
int c = T[i / p][2];
int x, y, z;
if(p >= h){
x = 1, y = i / p, z = p;
} else {
if(c * p <= h){
x = a, y = b, z = c * p;
}
else if(b * p <= h){
x = a, y = b * p, z = c;
if(y > z) swap(y, z);
}
else if(a * p <= h){
x = a * p, y = b, z = c;
if(x > y) swap(x, y);
if(y > z) swap(y, z);
} else {
x = a * b, y = c, z = p;
if(x > y) swap(x, y);
if(y > z) swap(y, z);
if(x > z) swap(x, z);
}
}
T[i][0] = x;
T[i][1] = y;
T[i][2] = z;
}
int n;
cin >> n;
up(1, n, i) cin >> A[i];
up(1, n, i) cin >> B[i];
up(1, n, i){
int s = 0, u = 1;
up(1, n, j){
int d = qgcd(A[i], B[j]);
u = 1ll * u * i % MOD;
s = (s + 1ll * d * u) % MOD;
}
printf("%d\n", s);
}
return 0;
}