快速乘法逆元(离线)
用法
离线计算 \(x = [x_1, x_2, \cdots, x_n]\) 在模 \(p\) 意义下的逆元。
#include "../header.cpp"
int A[MAXN], B[MAXN];
int P[MAXN], Q[MAXN];
int main(){
ios :: sync_with_stdio(false);
cin.tie(nullptr);
int n, p, K, S = 1;
cin >> n >> p >> K;
P[0] = 1;
for(int i = 1;i <= n;++ i){
cin >> A[i];
P[i] = 1ll * P[i - 1] * A[i] % p;
}
Q[n] = power(P[n], p - 2, p);
for(int i = n;i >= 1;-- i){
Q[i - 1] = 1ll * Q[i] * A[i] % p;
B[i] = 1ll * Q[i] * P[i - 1] % p;
}
int ans = 0;
for(int i = 1;i <= n;++ i){
S = 1ll * S * K % p;
ans = (ans + 1ll * S * B[i]) % p;
}
cout << ans << "\n";
return 0;
}